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Arbitrary Order Hierarchical Bases for Computational Electromagnetics

R. Rieben*, D. White, G. Rodrigue
Lawrence Livermore National Laboratory

1 Introduction

We present a clear and general method for constructing hierarchical vector bases of arbitrary polyno-
mial degree for use in the finite element solution of Maxwell’s equations. Hierarchical bases enable
p-refinement methods, where elements in a mesh can have different degrees of approximation, to
be easily implemented. This can prove to be quite useful as sections of a computational domain
can be selectively refined in order to achieve a greater error tolerance without the cost of refining
the entire domain. While there are hierarchical formulations of vector finite elements in publica-
tion (e.g. [1]), they are defined for tetrahedral elements only, and are not generalized for arbitrary
polynomial degree. Recently, Hiptmair, motivated by the theory of exterior algebra and differential
forms presented a unified mathematical framework for the construction of conforming finite element
spaces [2]. In [2], both 1-form (also called H(curl) ) and 2-form (also called H(div) ) conforming
finite element spaces and the definition of their degrees of freedom are presented. These degrees of
freedom are weighted integrals where the weighting function determines the character of the bases,
i.e. interpolatory, hierarchical, etc.

In this paper we follow the work of Ciarlet [3] and define a finite element as a set of three distinct
objects (Ω,P,A) such that:

• Ω is the polyhedral domain over which the element is defined
• P is a finite dimensional polynomial space from which basis functions are constructed
• A is a set of linear functionals (Degrees of Freedom) dual to P

Finite element basis functions are not uniquely specified until all three components of (Ω,P,A)
are defined. The finite element basis functions are a particular basis of P implicitly defined by the
relation

Ai(wj) = δi,j (1)

The key to defining hierarchical vector bases lies in the appropriate definition of the set A of degrees
of freedom. We present a specific procedure for computing a hierarchical basis of arbitrary polyno-
mial degree. While the approach is valid for a variety of element topologies and discrete forms, we
present the procedure for 1-form bases on hexahedrons.

2 Ω - Element Topology and Geometry

We perform all computations on a reference element Ω̂ (all objects explicity defined on the reference
element will be accented with a hat symbol). There exists a mapping Φ from the reference element
Ω̂ to the actual element Ω. This mapping (defined by interpolatory shape functions) and its Jacobian
are defined as

x = Φ(x̂); Ji,j =
∂xj

∂x̂i

, (2)

where x̂ ∈ Ω̂ and x ∈ Ω. Unlike the approach presented in [4] and [1], we define the basis functions
ŵ on the reference element and transform them as necessary during the finite element assembly
procedure. We do this because the hierarchical basis functions are expensive to compute; using the
following transformations the bases need only be computed once. The appropriate transformations
for 1-forms and their derivative are

w = J−1(ŵ ◦ Φ); dw =
1

|J|
JT (dŵ ◦ Φ) (3)



3 P - Polynomial Spaces

For P we use the polynomial space originally proposed in [5]. Let Qp1,p2,...,pn
denote a polynomial

of n variables (x1, x2, . . . , xn) whose maximum degree is p1 in x1, p2 in x2, . . . , pn in xn. Using
this notation, the appropriate polynomial space for a 1-form basis on the unit hexahedron is

Pp(Ω̂) = {u;ux ∈ Qp−1,p,p, uy ∈ Qp,p−1,p, uz ∈ Qp,p,p−1}; dim(Pp(Ω̂)) = 3p(p + 1)2 (4)

Note that Pp(Ω̂) does not yet define our finite element basis functions. Rather, we consider Pp(Ω̂) to
be a primitive space that is easily and efficiently implemented. The final hierarchical finite element
basis functions are a particular basis of Pp(Ω̂) defined by eq (1). In our implementation, this prim-
itive space is constructed by taking tensor direct products of 1-dimensional Lagrange interpolatory
polynomial sets defined on the reference interval [0, 1].

4 A - Degrees of Freedom

The set A of degrees of freedom consists of linear functionals that map an arbitrary function, g, onto
the set of real numbers. The set A satisfies three important properties; namely

• Unisolvence: A is dual to the finite element space, i.e. eq (1) must hold.
• Invariance: Degrees of freedom remain unisolvent upon a change of variables.
• Locality: The trace of a basis function on a sub-simplex is determined by degrees of freedom

associated only with that sub-simplex.

The linear functionals from A are defined in terms of weighted moment integrals over sub-simplices
of the element Ω (e.g. line integrals over edges, surface integrals over faces, etc . . . )[2]. If we
denote a sub-simplex of an element Ω of dimension n as Ωn, then the generalized form of the linear
functional for 1-forms is given by

{Ai(g)} =

∫

Ω̂n

(g ◦ Φ) ∧ JT q̂n, (5)

where q̂n is an (n − 1)-form weighting polynomial of n-variables defined over the reference sub-
simplex Ω̂n. For a 1-form, we require integrals over edges, faces and the volume of the element
itself. We can therefore break the set A into three mutually disjoint subsets

{A(g)} = {Ae(g)} ∪ {Af (g)} ∪ {Av(g)}, (6)

where the letters e, f, v denote sets of integrals over edges, faces and the volume of the element Ω
respectively.

In the computation of hierarchical basis functions, the degrees of freedom A are weighted moment
integrals evaluated on the reference element. Specifically,the 1-form hexahedral edge moments have
the form

{Âe(ĝ)} =

∫

ê

ĝ · (t̂q̂); dim(Âê) = 12 ∗ p (7)

The symbol t̂ denotes the unit tangent vector for each of the 12 edges on the reference hexahedron.
In this case the weighting polynomial q̂ is a 1-dimensional 0-form such that q̂ ∈ Qp−1. The face
moments will have the form

{Âf (ĝ)} =

∫∫

f̂

ĝ · (n̂ × q̂); dim(Âf ) = 6 ∗ 2p(p − 1) (8)

The symbol n̂ denotes the unit normal vector for each of the 6 faces on the reference hexahedron.
In this case the weighting polynomial q̂ is a 2-dimensional 1-form (i.e. it is defined in a plane) such
that q̂ = (q̂1, q̂2). In practice, these 2-dimensional 1-forms are implemented as three dimensional



vectors with one component set to zero (thus designating the plane in which it is defined). The non-
zero components are such that q̂1 ∈ Qp−2,p−1 and q̂2 ∈ Qp−1,p−2. Finally, the volume moments
will have the form

{Âv(ĝ)} =

∫∫∫

v̂

ĝ · q̂; dim(Âv) = 3p(p − 1)2 (9)

The weighting polynomial q̂ is a 3-dimensional 2-form such that q̂ = (q̂1, q̂2, q̂3), where q̂1 ∈
Qp−1,p−2,p−2, q̂2 ∈ Qp−2,p−1,p−2 and q̂3 ∈ Qp−2,p−2,p−1.

For our hierarchical basis, we use weighting functions in eqs (7)-(9) that are orthogonal, specifically
they are a variation of Legendre polynomials that are scaled and normalized over the reference
interval [0, 1]. Figure 1 gives some visual examples of the orthogonal weighting polynomials we
use. In addition, we evaluate the integrals numerically using Gaussian quadrature that is exact to
order 2p.
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Figure 1: Examples of 1D (left) and 2D (right) orthogonal weighting polynomials

Using this general approach, we can construct a hierarchical 1-form basis of polynomial degree p

in the following manner. We begin by generating a primitive basis {ĝj} ∈ G ⊆ P . Then the
hierarchical basis {ŵi} ∈ W is expressed as a linear combination of members of the primitive
basis. The key step is constructing the linear system

Vi,j = Âi(ĝj); (10)

which is similar to a Vandermonde matrix. Then, the hierarchical basis is given by

W = V −1G (11)

Note that V is a numerical matrix that we invert using LU decomposition. While it may seem
computationally expensive to invert a matrix in order to get the hierarchical basis, it should be noted
that it is a one time cost to compute the basis on the reference element. As mentioned in Section 2,
the reference basis is easily mapped to actual elements via the transformation rules of eq (3).

5 Numerical Example

In this simple example we solve the vector Helmholtz equation using a hierarchical 1-form basis.
The PDE in question and its discrete form are given by

∇×
1

µ
∇× E − εω2E = f (12)

(

A − ω2B
)

x = b (13)

where A is the global stiffness matrix, B is the global mass matrix, b is the global load vector,
and x is the unknown vector of finite element coefficients. We solve the above discrete equation



using different approximation schemes and compare the resulting number of unknowns and the L2
approximation error. In order to compute errors, we choose an exact solution

E(x, y, z) =







(1, 0, x) : x < 4
(1, 0, 1.5x3 − 20.25x2 + 90.25x − 132) : 4 ≤ x < 5

(1, 0, x − 1) : x ≥ 5
(14)

and insert this into (12) to form the corresponding source function f . Figure 2 shows a plot of the
exact solution over the computational domain. The mesh consists of 9 hexahedral elements. For
the first three approximation schemes, we use a hierarchical 1-form basis of polynomial degrees
p = 1, 2 and 3 throughout the entire mesh. Because the exact solution is cubic, an L2 error of zero
(to machine precision) is achieved using a 3rd degree basis. However, using a selectively refined
mesh we can achieve the same error tolerance but with far fewer unknowns. Because the basis
functions are hierarchical, it is a simple matter to join the p = 1 elements to the p = 3 elements,
the higher degree basis functions on the shared face joining the two elements are simply discarded.
These results are summarized in Table 1.

Figure 2: Function used to test hierarchical basis.

Approximation Scheme Number of Unknowns L2 Error

p = 1 60 2.55488634658e-01
p = 2 306 1.63222013549e-02
p = 3 864 1.39937249725e-14
p = 1 and 3 416 1.84362234500e-14

Table 1: Computational results for solution of vector Helmholtz equation

6 Conclusions

We have demonstrated that by properly formulating the set A of degrees of freedom by using orthog-
onal Legendre polynomials and using this set to create a linear transformation matrix, we can convert
a standard interpolatory basis (or primitive basis) into a hierarchical basis. This procedure is valid
for arbitrary polynomial degree and can be applied to other element topologies besides hexahedrons
(i.e. tetrahedrons and prisms). The numerical benefits of a hierarchical basis were demonstrated
using a simple test problem and it was shown that a significant reduction in the number of system
unknowns (and hence overall computational cost) can be achieved while still maintaining the same
level of accuracy by using a mesh that is selectively p-refined. Work for DOE by UC/LLNL(W-7405-Eng-48)
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